PC-HELPER

USB I/O Unit X Series
Digital I/O Unit with Opto-Isolation for USB

DIO-3232LX-USB

User’s Guide

CONTEC CO., LTD.
Check Your Package

Thank you for purchasing the CONTEC product.
The product consists of the items listed below.
Check, with the following list, that your package is complete. If you discover damaged or missing items, contact your retailer.

Product Configuration List
- Unit [DIO-3232LX-USB] …1
- USB cable (1.8m) …1
- USB cable attachment on the main unit’s side (For Mini B connector side) …1
- Clamps for prevention of cable on the main unit’s side …1
- CD-ROM *1 [API-USBP(WDM)] …1
- Power connector MC1,5/3-ST-3,5 …1
- First step guide …1
- Ferrite core …1
- Warranty Certificate …1
- Serial number label …1

*1 The CD-ROM contains the driver software and User’s Guide (this guide)
Copyright

Copyright 2009 CONTEC CO., LTD. ALL RIGHTS RESERVED.

No part of this document may be copied or reproduced in any form by any means without prior written consent of CONTEC CO., LTD.

CONTEC CO., LTD. makes no commitment to update or keep current the information contained in this document. The information in this document is subject to change without notice.

All relevant issues have been considered in the preparation of this document. Should you notice an omission or any questionable item in this document, please feel free to notify CONTEC CO., LTD.

Regardless of the foregoing statement, CONTEC assumes no responsibility for any errors that may appear in this document or for results obtained by the user as a result of using this product.

Trademarks

MS, Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation. Other brand and product names are trademarks of their respective holder.

Table of Contents
Table of Contents

Check Your Package .. i
Copyright ... ii
Trademarks .. ii
Table of Contents ... iii

1. BEFORE USING THE PRODUCT

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Unit</td>
<td>1</td>
</tr>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Support Software</td>
<td>3</td>
</tr>
<tr>
<td>Cable & Connector (Option)</td>
<td>3</td>
</tr>
<tr>
<td>Accessories (Option)</td>
<td>4</td>
</tr>
<tr>
<td>Customer Support</td>
<td>5</td>
</tr>
<tr>
<td>Web Site</td>
<td>5</td>
</tr>
<tr>
<td>Limited One-Year Warranty</td>
<td>5</td>
</tr>
<tr>
<td>How to Obtain Service</td>
<td>5</td>
</tr>
<tr>
<td>Liability</td>
<td>5</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>6</td>
</tr>
<tr>
<td>Safety Information</td>
<td>6</td>
</tr>
<tr>
<td>Handling Precautions</td>
<td>6</td>
</tr>
<tr>
<td>Environment</td>
<td>8</td>
</tr>
<tr>
<td>Inspection</td>
<td>8</td>
</tr>
<tr>
<td>Storage</td>
<td>8</td>
</tr>
<tr>
<td>Disposal</td>
<td>8</td>
</tr>
</tbody>
</table>

2. SETUP

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Setup?</td>
<td>9</td>
</tr>
<tr>
<td>Installing the driver</td>
<td>9</td>
</tr>
<tr>
<td>Step 1 Setting the Hardware</td>
<td>10</td>
</tr>
<tr>
<td>Name of each parts</td>
<td>10</td>
</tr>
<tr>
<td>Step 2 Initializing the Software</td>
<td>11</td>
</tr>
<tr>
<td>Illustration of Menu Screen</td>
<td>11</td>
</tr>
<tr>
<td>Installation of API-USBP(WDM) Development Environment</td>
<td>12</td>
</tr>
<tr>
<td>Step 3 Installing the Hardware</td>
<td>13</td>
</tr>
<tr>
<td>Connection with 5VDC Power Supply for Self-power</td>
<td>13</td>
</tr>
<tr>
<td>Connecting the Product</td>
<td>14</td>
</tr>
<tr>
<td>Setting with the Found New Hardware Wizard</td>
<td>16</td>
</tr>
<tr>
<td>Setting Properties Using Device Manager</td>
<td>17</td>
</tr>
<tr>
<td>Step 4 Checking Operations with the Diagnosis Program</td>
<td>19</td>
</tr>
<tr>
<td>What is the Diagnosis Program</td>
<td>19</td>
</tr>
</tbody>
</table>
3. EXTERNAL CONNECTION

Using the Connectors ... 23
Connecting to a Connector ... 23
Connector Pin Assignment ... 24
Relationships between Logical Ports/Bits and Connector Signal Pins 28
Connecting Input Signals ... 29
Input Circuit ... 29
Connecting a Switch .. 29
Connecting Output Signals ... 30
Output Circuit ... 30
Connection to the LED .. 31
Example of Connection to TTL Level Input .. 31
Connecting the Sink Type Output and Sink Output Support Input ... 32

4. APPLICATION DEVELOPMENT

Reference to Online Help ... 33
Printing Function Reference ... 33
Sample Program ... 34
Distributing Developed Application ... 34
Returning to Initial State .. 35

5. FUNCTION

Data I/O Function .. 37
Data Input .. 37
Data Output .. 37
Monitoring Output Data .. 37
Digital Filter ... 38
Digital Filter Function Principle ... 38
Set Digital Filter Time ... 38
Interrupt Control Function ... 39
Disabling/enabling Interrupts .. 39
Selecting the Interrupt Edge ... 39
Clearing the Interrupt Status and Interrupt Signal .. 39

6. ABOUT HARDWARE

Hardware specification ... 41
Physical dimensions .. 43
Block Diagram .. 43
1. Before Using the Product

This chapter provides information you should know before using the product.

About the Unit

This product is an USB2.0-compliant digital I/O unit used to provide a digital signal I/O function on a PC.
This product can input and output digital signals at 12 - 24VDC. This product features 32 channels of Optocoupler isolated inputs (compatible with current sink output) and 32 channels of Optocoupler isolated open-collector outputs (current sink type). You can use 32 input signals as interrupt inputs. Equipped with the digital filter function to prevent wrong recognition of input signals and output transistor protection circuit (surge voltage protection and over current protection).
As there is compatible with PCI bus-compatible board PIO-32/32L(PCI)H and PCI Express bus-compatible board DIO-3232L-PE in terms of connector shape and pin assignments, it is easy to migrate from the existing system.
Windows driver is bundled with this product. Possible to be used as a data recording device for LabVIEW, with dedicated libraries.

Features

- 32 channels of Optocoupler isolated inputs (compatible with current sink output) and 32 channels of Optocoupler isolated open-collector outputs (current sink type)

This product has the 32 channels of Optocoupler isolated inputs (compatible with current sink output) and the 32 channels of Optocoupler isolated open-collector outputs (current sink type) whose response speed is 200µsec. Supporting driver voltages of 12 - 24 VDC for I/O.
(12 - 24VDC external circuit power supply is required separately.)

- Compatible to USB1.1/USB2.0

Compatible to USB1.1/USB2.0 and capable to achieve high speed transfer at HighSpeed (480 Mbps).

- USB HUB function

This product has the USB hub function. Max. 4 DIO-3232LX-USB can be used in 1 USB port of PC. *1 When you use 4 or more DIO-3232LX-USB, you can do by connecting DIO-3232LX-USB to the another USB port of PC side. *2 Also, you can connect the CONTEC’s USB device other than DIO-3232LX-USB to the USB port of DIO-3232LX-USB. *3*4
1. Before Using the Product

- Common terminal provided per 16 channels

Common terminal provided per 16 channels, capable of supporting a different external power supply.

- Optocoupler bus isolation

As the USB (PC) is isolated from the input and output interfaces by Optocouplers, this product has excellent noise performance.

- You can use 32 input signals as interrupt request signals.

You can use 32 input signals as interrupt request signals and also disable or enable the interrupt in bit units and select the edge of the input signals, at which to generate an interrupt.

- This product has a digital filter to prevent wrong recognition of input signals from carrying noise or a chattering.

This product has a digital filter to prevent wrong recognition of input signals from carrying noise or a chattering. All input terminals can be added a digital filter, and the setting can be performed by software.

- Output circuits include zener diodes for surge voltage protection and poly-switches for overcurrent protection.

Zener diodes are connected to the output circuits to protect against surge voltages. Similarly, polyswitches are fitted to each group of 8 channels outputs for over-current protection. The output rating is max. 35VDC, 100mA per channel.

- Connectors are compatible with PCI/PCI Express bus-compatible board

As there is compatible with PIO-32/32L(PCI)H and DIO-3232L-PE in terms of connector shape and pin assignments, it is easy to migrate from the existing system. If the system of this product is created by the digital I/O driver API-DIO(98/PC), it is required to replace it with API-DIO(WDM).

- Windows compatible driver libraries are attached.

Using the attached digital I/O driver API-DIO(WDM) makes it possible to create applications of Windows. In addition, a diagnostic program by which the operations of hardware can be checked is provided.

- LabVIEW is supported by a plug-in of dedicated library VI-DAQ.

Using the dedicated library VI-DAQ makes it possible to make a LabVIEW application.

*1 This product cannot be stacked up for installation.

*2 When you use the USB port included on the DIO-3232LX-USB, use 5VDC power supply for self-power. For more details on the connection with 5VDC power supply, refer to chapter2 - step3, “Connection with 5VDC Power Supply for Self-power”.

*3 Do not connect the device other than that of CONTEC’s USB to the USB port included on the DIO-3232LX-USB. Otherwise, this may cause a failure or malfunction.

*4 When connecting multiple units with USB HUB function and set up them, do one at a time and complete setup for the previous unit before starting to do the next unit.
Support Software

You should use CONTEC support software according to your purpose and development environment.

Windows version of digital I/O driver
API-DIO(WDM)
[Stored on the bundled CD-ROM driver library API-USBP(WDM)]

It is the library software, and which supplies command of hardware produced by our company in the form of standard Win32 API function(DLL). Using programming languages supporting Win32API functions, such as Visual Basic and Visual C++ etc., you can develop high-speed application software with feature of hardware produced by our company.

In addition, you can verify the operation of hardware using Diagnostic programs.

< Operating environment >

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptation language</td>
<td>Visual Basic, Visual C++, Visual C#, Delphi, C++ Builder</td>
</tr>
</tbody>
</table>

You can download the updated version from the CONTEC’s Web site (http://www.contec.com/product/device/apiusbp/). For more details on the supported OS, applicable language and new information, please visit the CONTEC’s Web site.

Data acquisition VI library for LabVIEW
VI-DAQ (Available for downloading (free of charge) from the CONTEC web site.)

This is a VI library to use in National Instruments LabVIEW. VI-DAQ is created with a function form similar to that of LabVIEW's Data Acquisition VI, allowing you to use various devices without complicated settings.

See http://www.contec.com/vidaq/ for details and download of VI-DAQ.

Cable & Connector (Option)

<table>
<thead>
<tr>
<th>Shield Cable with 96-Pin Half-Pitch Connectors at Both Ends</th>
<th>: PCB96PS-0.5P (0.5m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: PCB96PS-1.5P (1.5m)</td>
</tr>
<tr>
<td></td>
<td>: PCB96PS-3P (3m)</td>
</tr>
<tr>
<td></td>
<td>: PCB96PS-5P (5m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flat Cable with 96-Pin Half-Pitch Connectors at Both Ends</th>
<th>: PCB96P-1.5 (1.5m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: PCB96P-3 (3m)</td>
</tr>
<tr>
<td></td>
<td>: PCB96P-5 (5m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shield Cable with 96-Pin Half-Pitch Connectors at One End</th>
<th>: PCA96PS-0.5P (0.5m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>: PCA96PS-1.5P (1.5m)</td>
</tr>
<tr>
<td></td>
<td>: PCA96PS-3P (3m)</td>
</tr>
<tr>
<td></td>
<td>: PCA96PS-5P (5m)</td>
</tr>
</tbody>
</table>
1. Before Using the Product

Flat Cable with 96-Pin Half-Pitch Connectors at One End
: PCA96P-1.5 (1.5m)
: PCA96P-3 (3m)
: PCA96P-5 (5m)

Distribution shield cable with 96-Pin Half-Pitch Connectors (96P→37P x 2)
: PCB96WS-1.5P (1.5m)
: PCB96WS-3P (3m)
: PCB96WS-5P (5m)

Half Pitch 96P Female Connector Set (5 Pieces)
: CN5-H96F

Accessories (Option)

Screw Terminal Unit (M3 x 96P) : EPD-96A *1 *4
Screw Terminal Unit (M3.5 x 96P) : EPD-96 *1
Terminal Unit for Cables (M2.5 x 96P) : DTP-64(PC) *1
Signal Monitor / Output Accessory for Digital I/O (64P) : CM-64 L *1
Screw Terminal Unit (M3 x 37P) : EPD-37A *2 *4
Screw Terminal Unit (M3.5 x 37P) : EPD-37 *2
General Purpose Terminal (M3 x 37P) : DTP-3C *2
Screw Terminal (M2.5 x 37P) : DTP-4C *2
Signal Monitor / Output Accessory for Digital I/O (32P) : CM-32L *2
Connection Conversion Board (96-Pin→37-Pin x 2) : CCB-96 *3
AC adaptor (input : 90 - 264VAC, output : 5VDC 2.0A) : POA200-20-2
USB I/O Unit Bracket for X Series : BRK-USB-X
AC-DC power supply unit (input: 90 - 132VAC, output: 5VDC 3.0A) : POW-AC13GY
AC-DC power supply unit (input: 85 - 264VAC, output: 5VDC 2.0A) : POW-AD22GY
DC-DC power supply unit (input: 10 - 30VDC, output: 5VDC 3.0A) : POW-DD10GY
DC-DC power supply unit (input: 30 - 50VDC, output: 5VDC 3.0A) : POW-DD43GY

*1 A PCB96P or PCB96PS optional cable is required.
*2 A PCB96WS optional cable is required separately.
*3 Optional PCB96P, PCB96PS or cable for 37Pin D-SUB is required separately.
*4 “Spring-up” type terminal is used to prevent terminal screws from falling off.
* Check the CONTEC’s Web site for more information on these options.
Customer Support

CONTEC provides the following support services for you to use CONTEC products more efficiently and comfortably.

Web Site

Japanese http://www.contec.co.jp/
English http://www.contec.com/
Chinese http://www.contec.com.cn/

Latest product information
CONTEC provides up-to-date information on products.
CONTEC also provides product manuals and various technical documents in the PDF.

Free download
You can download updated driver software and differential files as well as sample programs available in several languages.

Note! For product information
Contact your retailer if you have any technical question about a CONTEC product or need its price, delivery time, or estimate information.

Limited One-Year Warranty

CONTEC products are warranted by CONTEC CO., LTD. to be free from defects in material and workmanship for up to one year from the date of purchase by the original purchaser.

Repair will be free of charge only when this device is returned freight prepaid with a copy of the original invoice and a Return Merchandise Authorization to the distributor or the CONTEC group office, from which it was purchased.

This warranty is not applicable for scratches or normal wear, but only for the electronic circuitry and original products. The warranty is not applicable if the device has been tampered with or damaged through abuse, mistreatment, neglect, or unreasonable use, or if the original invoice is not included, in which case repairs will be considered beyond the warranty policy.

How to Obtain Service

For replacement or repair, return the device freight prepaid, with a copy of the original invoice. Please obtain a Return Merchandise Authorization number (RMA) from the CONTEC group office where you purchased before returning any product.

* No product will be accepted by CONTEC group without the RMA number.

Liability

The obligation of the warrantor is solely to repair or replace the product. In no event will the warrantor be liable for any incidental or consequential damages due to such defect or consequences that arise from inexperienced usage, misuse, or malfunction of this device.
1. Before Using the Product

Safety Precautions
Understand the following definitions and precautions to use the product safely.

Safety Information
This document provides safety information using the following symbols to prevent accidents resulting in injury or death and the destruction of equipment and resources. Understand the meanings of these labels to operate the equipment safely.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage.</td>
</tr>
</tbody>
</table>

Handling Precautions

⚠️ DANGER
Do not use the product where it is exposed to flammable or corrosive gas. Doing so may result in an explosion, fire, electric shock, or failure.

⚠️ CAUTION
- Do not strike or bend this product. Otherwise, this may malfunction, overheat, cause a failure or breakage.
- Do not touch this product's terminals (edge connector) with your hands. Otherwise, this may malfunction, overheat, or cause a failure. If the terminals are touched by someone's hands, clean the terminals with industrial alcohol.
- Do not close the ventilation hole(s) of this product by, for example, placing an object. This may cause overheating, malfunction, and/or failure of the product.
- Do not touch the external connector when the power is on. Otherwise, this may malfunction, overheat, cause a failure due to static electricity.
- Make sure that your PC can supply ample power to all this product installed. Insufficiently energized products could malfunction, overheat, or cause a failure.
- When you use the USB port included on the DIO-3232LX-USB, use 5VDC power supply for self-power.
- Do not connect the device other than that of CONTEC’s USB to the USB port included on the DIO-3232LX-USB. Otherwise, this may cause a failure or malfunction.
- When connecting multiple units with USB HUB function and set up them, do one at a time and complete setup for the previous unit before starting to do the next unit.
- The specifications of this product are subject to change without notice for enhancement and quality improvement. Even when using this product continuously, be sure to read the manual and understand the contents.
- Do not modify this product. CONTEC will bear no responsibility for any problems, etc., resulting from modifying this product.
- Regardless of the foregoing statements, CONTEC is not liable for any damages whatsoever (including damages for loss of business profits) arising out of the use or inability to use this CONTEC product or the information contained herein.
- If you use this product in a noisy environment, attach the bundled ferrite core to stabilize the operation. When attaching a ferrite core to the USB cable, coil it around once near the connector while leaving it open, and then close it.

FCC PART 15 Class A Notice

NOTE
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING TO USER
Change or modifications not expressly approved the manufacturer can void the user's authority to operate this equipment.
1. Before Using the Product

Environment
Use this product in the following environment. If used in an unauthorized environment, this product may overheat, malfunction, or cause a failure.

Operating temperature
0 - 50°C

Humidity
10 - 90%RH (No condensation)

Corrosive gases
None

Floating dust particles
Not to be excessive

Inspection
Inspect the product periodically as follows to use it safely.

- Check that the connector has no dust or foreign matter adhering.

Storage
When storing this product, keep it in its original packing form.
(1) Put this product in the storage bag.
(2) Wrap it in the packing material, and then put it in the box.
(3) Store the package at room temperature at a place free from direct sunlight, moisture, shock, vibration, magnetism, and static electricity.

Disposal
When disposing of the product, follow the disposal procedures stipulated under the relevant laws and municipal ordinances.
2. Setup

This chapter explains how to set up this product.

What is Setup?

Setup means a series of steps to take before the product can be used. Different steps are required for software and hardware.

Installing the driver

This section enables you to prepare the software and hardware by operating in accordance with each step in this chapter using the bundled CD-ROM. Taking the following steps sets up the software and hardware. You can use the diagnosis program later to check whether the software and hardware function normally.

- Step 1 Setting the Hardware
- Step 2 Installing the Software
- Step 3 Installing the Hardware
- Step 4 Checking Operations with the Diagnosis Program

Uninstall the driver and then set it up again if it cannot be set up properly.
Step 1 Setting the Hardware

This section describes how to set up the product and how to connect it to a PC.

Name of each parts

LED indicator

The above figure has installed the USB cable attachment.

Figure 2.1. Name of each parts (Front side)
Step 2 Initializing the Software

Install software.
The following description assumes the operating system as Windows XP. Although some user interfaces are different depending on the OS used, the basic procedure is the same.

Points
- If you are using Windows XP or Windows 2000, please log on as Administrator (authorized account) before proceeding to the following steps.

The following shows the basic flow for installing product.

Illustration of Menu Screen

- Please set up the supplied CD-ROM if it has not been set up. The menu starts automatically.
- If the menu do not start, launch X:AUTORUN.EXE(X:CD-ROM drive) from [Run...] in Start menu.
- The screen design may be different.

Install Development Environment such as sample programs and online help
Install utility.
Refer to the user's guide.
Refer to the content of CD-ROM.

Install C-LOGGER.
* Cannot be used for this product.
Installation of API-USBP(WDM) Development Environment

Installation of development environment is namely installing supplied online help and sample program in all language in order to use API function.

1) Clicking on “Install Development or Execution Environment”.
 [API-USBP(WDM) Installer] dialog box displays.

2) Selecting “Advanced Digital I/O driver”.

3) Clicking on “Continue” Button.
 Please perform installation following the directions on the screen. And thus the installation is completed.

* The screen design may be different.
Step 3 Installing the Hardware

Under Windows, information about the converter needs to be detected by the OS. This is called hardware installation.

To use more than one of this product, make sure to install them one by one, setting each unit after completing the previous one.

Connection with 5VDC Power Supply for Self-power

When you use the HUB function (USB Type A connector) included on the DIO-1616LX-USB, this product must be connected with 5VDC power supply (in a self-powered state). Connect with 5VDC power supply by using +5VDC input pin.

![5VDC Pinouts](image)

Figure 2.2. +5 VDC Input Terminal Pinouts

To supply power using the bundled power connector (MC1,5/3-ST-3,5, compatible cable : AWG28 - 16), strip the end of the compatible cable, insert it into the power connector, then securely screw it.

When using the optional AC adaptor [POA200-20-2], please connect directly to the input terminals.

![Connection Diagram](image)

Figure 2.3. Connecting the AC Adapter POA200-20-2

Beside the AC adaptor, a power supply for installation on a DIN rail is also available (as an option). Use the appropriate power supply depending on the operating environment and application. When a power supply for installation on a DIN rail is used, connect the unit using the accompanying power connector MC1,5/-ST-3,5.

⚠️ CAUTION

Connect 5VDC power supply to the main unit. Next, connect the USB cable to the PC. Do not turn it on or off when using. If you remove, USB cable is first and then 5VDC power supply.
Connecting the Product

(1) Turn on the power to the PC before connecting this product.

(2) When the PC has been up and running, plug the USB interface connector to a USB port in the PC. The converter can also be connected to the PC via a USB hub of this product.

(3) USB cable can be attached firmly to the main unit by using a USB cable attachment.

CAUTION

- The USB cable attachment cannot be used excluding an attached cable.
- When the USB cable attachment is being used, do not perform removing and connecting the USB cable on the unit side repeatedly. This may damage the USB cable attachment or yourself.
(4) When connecting the USB cable through the USB hub of this product, it can be made easily not to come off by using clamps for prevention of cable on the main unit's side (Appended goods).

Figure 2.6. Usage of clamps for prevention of cable on the main unit's side
2. Setup

Setting with the Found New Hardware Wizard

1. The “Found New Hardware Wizard” will be started.

 * In Windows Vista, because the driver's installation is completed by "Installing the Software", it is not necessary to operate it about the Hardware Wizard.

2. Select “Install from a list or specific location”, then click on the [Next] button.

 Detect setup information from supplied CD automatically for installing USB driver.

 ![Found New Hardware Wizard]

 ![Found New Hardware Wizard]

 * The name of the connected product will be displayed. DIO-3232LX-USB

 Point

 Please specify the path for supplied CD as follows in the case of failure in detecting automatically.

 X:\INF\WDM\DIO (X: CD-ROM drive)

3. Click on [Finish] button to complete the installation of USB driver.

 ![Found New Hardware Wizard]

 ![Found New Hardware Wizard]

 * The name of the connected product will be displayed. DIO-3232LX-USB
Setting Properties Using Device Manager

After connecting product with a PC and completing driver installation, open Device Manager and set properties.

(1) Starting Device Manager.
 From [Start] menu, click on [Settings]-[Control Panel]-[System] and then click on [Device Manager] button in [Hardware] tab.

 ![Device Manager Screenshot]

 * The name of the connected product will be displayed. DIO-3232LX-USB

 - In the case of Windows 98/Me
 Right-click on [My Computer] and select [Properties] to start device manager.
2. Setup

(2) Setting the Device Name.
Right-clicking on the product name and selecting [Properties] displays [Product Properties].
Open [Common Settings] tab and enter arbitrary name in the editing box for device name.
(Default name also can be used.)

* The product-specific number will be displayed as the serial number.

⚠️ CAUTION
USB driver can not be used without settings. Settings must be performed.

(3) Clicking on [OK] button.
Device name is set by clicking [OK] button.

Points
- When the application developed by users is running on another PC, please perform foregoing operation on the target computer. (No need to install software introduced on next page)
- Please use the device name specified in last step for initialization function when initialization is performed using API function. When running on other PC, it can run without changing the application for the same device name being specified.
Step 4 Checking Operations with the Diagnosis Program

Use the diagnosis program to check that the product and driver software work normally, thereby you can confirm that they have been set up correctly.

What is the Diagnosis Program?

The diagnosis program diagnoses the states of the product and driver software. It can also be used as a simple checker when an external device is actually connected. Using the “Diagnosis Report” feature reports the driver settings, the presence or absence of the product, I/O status, and interrupt status.

Using the Diagnosis Program

Starting the Diagnosis Program
Click [Diagnosis] on the Properties page to start the diagnosis program.

* The name of the connected product will be displayed. DIO-3232LX-USB
Checking Digital Inputs and Outputs
The main panel of the Diagnosis Program appears.
You can check the current operation states of the product in the following boxes:

“Input Port” : Displays input values bit by bit at fixed time intervals.
“Output Port” : Mouse operation allows the data to output or display.

To use the function execution time measurement feature, click on the [Measurement Time] button.
Enter the I/O start port and the number of ports, then press the measurement button. The time for each execution of a function will be measured.

* The name of the connected product will be displayed. DIO-3232LX-USB

Input port : 32Bit
Output port : 32Bit will be displayed.
2. Setup

Diagnosis Report

(1) Clicking on the [Show Diagnosis Report] button displays detailed data such as product settings and the diagnosis results while saving them in text format. The Diagnosis Program performs “product presence/absence check”, “driver file test”, “board setting test”, and so on.

⚠️ CAUTION
Before executing diagnosis report output, unplug the cable from the product.

(2) A diagnosis report is displayed as shown below.

![Diagnosis Report Screen]

* The name of the connected product will be displayed. DIO-3232LX-USB

Input port: 32Bit
Output port: 32Bit will be displayed.

Click on [Show Diagnosis Report].

* The name of the connected product will be displayed. DIO-3232LX-USB
2. Setup
3. External Connection

This chapter describes the interface connectors on the product and the external I/O circuits. Check the information available here when connecting an external device.

Using the Connectors

Connecting to a Connector

To connect an external device to this product, plug the cable from the device into the interface connector (CN1) of unit shown below.

* Please refer to chapter 1 for more information on the supported cable and accessories.

Figure 3.1. Interface Connector Shape
Connector Pin Assignment

Pin Assignments of Interface Connector (CN1)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal name</th>
<th>Meaning</th>
<th>Pin No.</th>
<th>Signal name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>B48</td>
<td>OP 6/7</td>
<td>Common plus pin for +6/+7 output ports</td>
<td>A48</td>
<td>IP 2/3</td>
<td>Common plus pin for +2/+3 input ports</td>
</tr>
<tr>
<td>B47</td>
<td>OP 6/7</td>
<td></td>
<td>A47</td>
<td>IP 2/3</td>
<td></td>
</tr>
<tr>
<td>B46</td>
<td>O-77</td>
<td></td>
<td>A46</td>
<td>I-37</td>
<td></td>
</tr>
<tr>
<td>B45</td>
<td>O-76</td>
<td>+7 port (output)</td>
<td>A45</td>
<td>I-36</td>
<td>+3 port (input)</td>
</tr>
<tr>
<td>B44</td>
<td>O-75</td>
<td></td>
<td>A44</td>
<td>I-35</td>
<td></td>
</tr>
<tr>
<td>B43</td>
<td>O-74</td>
<td></td>
<td>A43</td>
<td>I-34</td>
<td></td>
</tr>
<tr>
<td>B42</td>
<td>O-73</td>
<td></td>
<td>A42</td>
<td>I-33</td>
<td></td>
</tr>
<tr>
<td>B41</td>
<td>O-72</td>
<td></td>
<td>A41</td>
<td>I-32</td>
<td></td>
</tr>
<tr>
<td>B40</td>
<td>O-71</td>
<td></td>
<td>A40</td>
<td>I-31</td>
<td></td>
</tr>
<tr>
<td>B39</td>
<td>O-70</td>
<td></td>
<td>A39</td>
<td>I-30</td>
<td></td>
</tr>
<tr>
<td>B38</td>
<td>O-67</td>
<td></td>
<td>A38</td>
<td>I-27</td>
<td></td>
</tr>
<tr>
<td>B37</td>
<td>O-66</td>
<td></td>
<td>A37</td>
<td>I-26</td>
<td></td>
</tr>
<tr>
<td>B36</td>
<td>O-65</td>
<td>+6 port (output)</td>
<td>A36</td>
<td>I-25</td>
<td>+2 port (input)</td>
</tr>
<tr>
<td>B35</td>
<td>O-64</td>
<td></td>
<td>A35</td>
<td>I-24</td>
<td></td>
</tr>
<tr>
<td>B34</td>
<td>O-63</td>
<td></td>
<td>A34</td>
<td>I-23</td>
<td></td>
</tr>
<tr>
<td>B33</td>
<td>O-62</td>
<td></td>
<td>A33</td>
<td>I-22</td>
<td></td>
</tr>
<tr>
<td>B32</td>
<td>O-61</td>
<td></td>
<td>A32</td>
<td>I-21</td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>O-60</td>
<td></td>
<td>A31</td>
<td>I-20</td>
<td></td>
</tr>
<tr>
<td>B30</td>
<td>ON 6/7</td>
<td>Common minus pin for +6/+7 output ports</td>
<td>A30</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B29</td>
<td>ON 6/7</td>
<td></td>
<td>A29</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B28</td>
<td>N.C.</td>
<td></td>
<td>A28</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B27</td>
<td>N.C.</td>
<td></td>
<td>A27</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B26</td>
<td>N.C.</td>
<td></td>
<td>A26</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B25</td>
<td>N.C.</td>
<td></td>
<td>A25</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B24</td>
<td>N.C.</td>
<td></td>
<td>A24</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B23</td>
<td>N.C.</td>
<td></td>
<td>A23</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B22</td>
<td>N.C.</td>
<td></td>
<td>A22</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B21</td>
<td>N.C.</td>
<td></td>
<td>A21</td>
<td>N.C.</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td>OP 4/5</td>
<td>Common plus pin for +4/+5 output ports</td>
<td>A20</td>
<td>I-00</td>
<td>Common plus pin for +0/+1 input ports</td>
</tr>
<tr>
<td>B19</td>
<td>OP 4/5</td>
<td></td>
<td>A19</td>
<td>I-01</td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td>O-57</td>
<td></td>
<td>A18</td>
<td>I-17</td>
<td></td>
</tr>
<tr>
<td>B17</td>
<td>O-56</td>
<td></td>
<td>A17</td>
<td>I-16</td>
<td></td>
</tr>
<tr>
<td>B16</td>
<td>O-55</td>
<td>+5 port (output)</td>
<td>A16</td>
<td>I-15</td>
<td>+1 port (input)</td>
</tr>
<tr>
<td>B15</td>
<td>O-54</td>
<td></td>
<td>A15</td>
<td>I-14</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>O-53</td>
<td></td>
<td>A14</td>
<td>I-13</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>O-52</td>
<td></td>
<td>A13</td>
<td>I-12</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>O-51</td>
<td></td>
<td>A12</td>
<td>I-11</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>O-50</td>
<td></td>
<td>A11</td>
<td>I-10</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>O-47</td>
<td></td>
<td>A10</td>
<td>I-07</td>
<td></td>
</tr>
<tr>
<td>B09</td>
<td>O-46</td>
<td></td>
<td>A09</td>
<td>I-06</td>
<td></td>
</tr>
<tr>
<td>B08</td>
<td>O-45</td>
<td></td>
<td>A08</td>
<td>I-05</td>
<td></td>
</tr>
<tr>
<td>B07</td>
<td>O-44</td>
<td>+4 port (output)</td>
<td>A07</td>
<td>I-04</td>
<td>+0 port (input)</td>
</tr>
<tr>
<td>B06</td>
<td>O-43</td>
<td></td>
<td>A06</td>
<td>I-03</td>
<td></td>
</tr>
<tr>
<td>B05</td>
<td>O-42</td>
<td></td>
<td>A05</td>
<td>I-02</td>
<td></td>
</tr>
<tr>
<td>B04</td>
<td>O-41</td>
<td></td>
<td>A04</td>
<td>I-01</td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>O-40</td>
<td></td>
<td>A03</td>
<td>I-00</td>
<td></td>
</tr>
<tr>
<td>B02</td>
<td>ON 4/5</td>
<td>Common minus pin for +4/+5 output ports</td>
<td>A02</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>B01</td>
<td>ON 4/5</td>
<td></td>
<td>A01</td>
<td>N.C.</td>
<td></td>
</tr>
</tbody>
</table>

* I-00 - I-37 can be used as interrupt input signal.

* [] shows pin numbers specified by HONDA TSUSHIN KOGYO CO., LTD.
3. External Connection

<table>
<thead>
<tr>
<th>Pins</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-00 - I-37</td>
<td>32 input signal pins. Connect output signals from the external device to these pins.</td>
</tr>
<tr>
<td>O-04 - O-77</td>
<td>32 output signal pins. Connect these pins to the input signal pins of the external device.</td>
</tr>
<tr>
<td>IP 0/1 - IP 2/3</td>
<td>Connect the positive side of the external power supply. These pins are common to 16 input signal pins.</td>
</tr>
<tr>
<td>OP 4/5 - OP 6/7</td>
<td>Connect the positive side of the external power supply. These pins are common to 16 output signal pins.</td>
</tr>
<tr>
<td>ON 4/5 - ON 6/7</td>
<td>Connect the negative side of the external power supply. These pins are common to 16 output signal pins.</td>
</tr>
</tbody>
</table>

Figure 3.2. Pin Assignments of Interface Connector (CN1)
3. External Connection

Pin Assignments of Optional Connector PCB96WS

- Optional cable PCB96WS

![Diagram of PCB96WS signal assignments]

Figure 3.3. PCB96WS Signal Assignments
Pin Assignments of Optional Connector CCB-96

- "Optional cable PCB96PS"
- "Connector conversion board CCB-96"

Connector DCLC-J37SAF-20L9
or equivalence to it (mfd by JAE)

<table>
<thead>
<tr>
<th></th>
<th>CN3(CNA)</th>
<th>CN4(CNB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N.C. 1</td>
<td>N.C. 1</td>
</tr>
<tr>
<td>-6 port</td>
<td>21:1-20</td>
<td>20:O-40</td>
</tr>
<tr>
<td></td>
<td>22:1-21</td>
<td>21:O-41</td>
</tr>
<tr>
<td></td>
<td>24:1-23</td>
<td>23:O-43</td>
</tr>
<tr>
<td></td>
<td>25:1-24</td>
<td>24:O-44</td>
</tr>
<tr>
<td></td>
<td>26:1-25</td>
<td>25:O-45</td>
</tr>
<tr>
<td></td>
<td>27:1-26</td>
<td>26:O-46</td>
</tr>
<tr>
<td></td>
<td>28:1-27</td>
<td>27:O-47</td>
</tr>
<tr>
<td></td>
<td>29:1-30</td>
<td>28:O-47</td>
</tr>
<tr>
<td></td>
<td>30:1-31</td>
<td>29:O-50</td>
</tr>
<tr>
<td></td>
<td>31:1-32</td>
<td>30:O-51</td>
</tr>
<tr>
<td></td>
<td>32:1-33</td>
<td>31:O-52</td>
</tr>
<tr>
<td></td>
<td>33:1-34</td>
<td>32:O-53</td>
</tr>
<tr>
<td></td>
<td>34:1-35</td>
<td>33:O-54</td>
</tr>
<tr>
<td></td>
<td>35:1-36</td>
<td>34:O-55</td>
</tr>
<tr>
<td></td>
<td>36:1-37</td>
<td>35:O-56</td>
</tr>
<tr>
<td>+1 port</td>
<td></td>
<td>36:O-57</td>
</tr>
<tr>
<td>N.C. 18</td>
<td>IP 2:3</td>
<td>N.C. 19</td>
</tr>
</tbody>
</table>

Common plus pin for +0/+1 input ports
Common plus pin for +2/+3 input ports
Common minus pin for +4/+5 output ports
Common minus pin for +6/+7 output ports
Common plus pin for +4/+5 output ports
Common plus pin for +6/+7 output ports

Figure 3.4. CCB-96 Signal Assignments
3. External Connection

Relationships between Logical Ports/Bits and Connector Signal Pins

The following table lists the relationships between the connector signal pins and the logical port / bit numbers.

Table 3.1. Logical Ports, Logical Bits, and Connector Signal Pins

|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|

|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|

Notes: I-xx represents the input signal. O-xx represents the output signal. [xx] represents the logical bit.

⚠️ CAUTION

The logical port and logical bit numbers are virtual port and bit numbers that enable programming independent of unit I/O addresses or unit types.
Connecting Input Signals

Connect the input signals to a device which can be current-driven, such as a switch or transistor output device.
The connection requires an external power supply to feed currents.
This product inputs the ON/OFF state of the current-driven device as a digital value.

Input Circuit

Figure 3.5. Input Circuit

The input circuits of interface blocks of this product is illustrated in Figure 3.5.
The signal inputs are isolated by Optocouplers (compatible with current sink output). This product therefore requires an external power supply to drive the inputs. The power requirement for each input pin is about 5.1mA at 24VDC (about 2.6mA at 12VDC).

Connecting a Switch

Figure 3.6. An Example to use Input I-00

When the switch is ON, the corresponding bit contains 1.
When the switch is OFF, by contrast, the bit contains 0.
Connecting Output Signals

Connect the output signals to a current-driven controlled device such as a relay or LED. The connection requires an external power supply to feed currents. This product controls turning on/off the current-driven controlled device using a digital value.

Output Circuit

* O-xx represents the output pin.

Figure 3.7. Output Circuit

The output circuits of interface blocks of this product is illustrated in Figure 3.7. The signal output section is an Optocoupler isolated, open-collector output (current sink type). Driving the output section requires an external power supply. The rated output current per channel is 100mA at maximum.

The output section can also be connected to a TTL level input as it uses a low-saturated transistor for output. The residual voltage (low-level voltage) between the collector and emitter with the output on is 0.5V or less at an output current within 50mA or at most 1.0V at an output current within 100mA.

A zener diode is connected to the output transistor for protection from surge voltages. A PolySwitch-based overcurrent protector is provided for every 8 output transistors. When the overcurrent protector works, the output section of this product is temporarily disabled. If this is the case, turn off the power to the PC and the external power supply and wait for a few minutes, then turn them on back.

⚠️ **CAUTION**

When the PC is turned on, all output are reset to OFF.
3. External Connection

Connection to the LED

When "1" is output to a relevant bit, the corresponding LED comes on. When "0" is output to the bit, in contrast, the LED goes out.

Figure 3.8. An Example to use Output O-20

Example of Connection to TTL Level Input

Figure 3.9. Connection Example of Output and TTL level Input Signal
Connecting the Sink Type Output and Sink Output Support Input

The following example shows a connection between a sink type output (output side) and a sink output support input (input side). Refer to this connection example when you connect such this product to each other.

![Diagram showing the connection between a sink type output and sink output support input](image)

Figure 3.10. Example of Connecting the Sink Type Output and Sink Output Support Input
4. Application Development

Please reference to online help and sample program when developing applications.

Reference to Online Help

Click on [Programs]-[CONTEC API-USBP(WDM)]-[API-USBP(WDM) Help] from [Start] menu.

The information for application development, such as function reference is provided in [API-USBP(WDM) Help].

Detailed introduction to search method for help should be found from [How to navigate Help] in the help.

Printing Function Reference

Clicking on Print button from online help prints the page being displayed. It can be printed entirely as follows in the case of referencing to printing function.

As figure shown on the right, selecting 📒 mark and clicking on Print button prints all the topics under the mark selected at a time.
4. Application Development

Sample Program

To run a sample program, click on [Programs] - [CONTEC API-USBP(WDM)] - [DIO] - [Sample Name] from [Start] menu.

Distributing Developed Application

Please distribute the developed application with USB driver in supplied CD-ROM. Created application (including driver) can be freely distributed.
Returning to Initial State

This is the method of returning to initial state. It is suggested that you should return to initial state and perform installation again when the operation is losing stabilization.

1. Deleting Device from Device Manager.

2. Drawing USB cable from a PC

3. Uninstalling Driver
 - Select [CONTEC API-DIO(WDM) driver] from [My Computer]-[Control Panel]-[Add/Remove Programs].

4. Restarting

*1 If 5VDC power supply is used, unplug it too.
 (It may not be normally initialized in the state of 5VDC power supply connection.)
5. Function

This section describes the features of this product.

Data I/O Function

Data Input

When input data is “ON”, “1” is input to the relevant bit.
When the input data is “OFF”, in contrast, “0” is input to the relevant bit

Data Output

When “1” is output to the relevant bit, the corresponding transistor is set to “ON”.
When “0” is output to the relevant bit, in contrast, the corresponding transistor is set to “OFF”.

⚠️ CAUTION

When the PC is turned on, all output are reset to 0 (OFF).

Monitoring Output Data

This product can read the state of the data currently being output without affecting the output data.
Digital Filter

Using this feature, this product can apply a digital filter to every input pin, thereby preventing wrong recognition of input signals from being affected by noise or chattering.

Digital Filter Function Principle

The digital filter checks the input signal level during the sampling time of the clock signal. When the signal level remains the same for the digital filter set time, the digital filter recognizes that signal as the input signal and changes the signal level of the PC.

If the signal level changes at a frequency shorter than the set time, therefore, the level change is ignored.

Set Digital Filter Time

Set the digital filter time to 0 - 20 (14h).

Setting the digital filter time to 0 disables digital filtering. It is set to 0 when the power is turned on.

Figure 5.2 shows the relationships between digital filter time settings and the actual digital filter times.

Digital Filter Time [sec.] = \(2^n / (8 \times 10^6)\)

\[n = \text{setting data}(0 - 20)\]

<table>
<thead>
<tr>
<th>Setting Data (n)</th>
<th>Digital Filter Time</th>
<th>Setting Data (n)</th>
<th>Digital Filter Time</th>
<th>Setting Data (n)</th>
<th>Digital Filter Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (00h)</td>
<td>The filter function is not used.</td>
<td>7 (07h)</td>
<td>16(\mu)sec</td>
<td>14 (0Eh)</td>
<td>2.048msec</td>
</tr>
<tr>
<td>1 (01h)</td>
<td>0.25(\mu)sec</td>
<td>8 (08h)</td>
<td>32(\mu)sec</td>
<td>15 (0Fh)</td>
<td>4.096msec</td>
</tr>
<tr>
<td>2 (02h)</td>
<td>0.5(\mu)sec</td>
<td>9 (09h)</td>
<td>64(\mu)sec</td>
<td>16 (10h)</td>
<td>8.192msec</td>
</tr>
<tr>
<td>3 (03h)</td>
<td>1(\mu)sec</td>
<td>10 (0Ah)</td>
<td>128(\mu)sec</td>
<td>17 (11h)</td>
<td>16.384msec</td>
</tr>
<tr>
<td>4 (04h)</td>
<td>2(\mu)sec</td>
<td>11 (0Bh)</td>
<td>256(\mu)sec</td>
<td>18 (12h)</td>
<td>32.768msec</td>
</tr>
<tr>
<td>5 (05h)</td>
<td>4(\mu)sec</td>
<td>12 (0Ch)</td>
<td>512(\mu)sec</td>
<td>19 (13h)</td>
<td>65.536msec</td>
</tr>
<tr>
<td>6 (06h)</td>
<td>8(\mu)sec</td>
<td>13 (0Dh)</td>
<td>1.024msec</td>
<td>20 (14h)</td>
<td>131.072msec</td>
</tr>
</tbody>
</table>

Figure 5.2. Digital Filter Time and Setting Data

⚠️ CAUTION ⚠️

- If you set the digital filter time, the filter applies to all input pins. You cannot apply the filter only to a specific filter.
- Do not set Setting Data to a value outside the above range as doing so can cause this product to malfunction.
Interrupt Control Function

This product can use all of the input signals as interrupt request signals.

This product can generate an interrupt request signal to the PC when the input signal change from High to Low or from Low to High.

When the digital filter (described above) is used, interrupt requests are generated by input signals that have passed through the filter.

Disabling/enabling Interrupts

Interrupt mask bits can be used to disable or enable the individual bits for interruptions.

Once a certain bit has been interrupt-disabled, no interrupt occurs even when the corresponding input signal changes its level.

To let interrupts occur, enable the corresponding interrupt mask bit for interruptions.

⚠️ CAUTION

All of the interrupt mask bits are interrupt-disabled when the power is turned on.

Selecting the Interrupt Edge

Interrupt edge select bits can be used to set the input logic for interruption bit by bit.

If you set an interrupt edge select bit to 0, an interrupt occurs when the input value to the corresponding bit changes from 0 to 1 (at the fall of the input signal from High to Low).

If you set an interrupt edge select bit to 1, an interrupt occurs when the input value to the corresponding bit changes from 1 to 0 (at the rise of the input signal from Low to High).

⚠️ CAUTION

When the power is turned on, all of the interrupt edge select bits are set to 0 so that an interrupt occurs when the input value changes from 0 to 1 (at the fall of the input signal from High to Low).

Clearing the Interrupt Status and Interrupt Signal

Interrupt status bits are used to identify the input signal bit being used for requesting an interrupt.

When an interrupt status is input, the interrupt request signal and the interrupt status are cleared automatically.

⚠️ CAUTION

- All of the interrupt status bits are set to 0 when the power is turned on.
- If an interrupt mask bit has been set to disable interrupts, the interrupt status bit is not set even when the input signal changes its level.
6. About Hardware

Hardware Specification

Table 6.1. Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input section</td>
<td></td>
</tr>
<tr>
<td>Number of input signal channels</td>
<td>32 channels (all available for interrupts) (1 common in 16 channels)</td>
</tr>
<tr>
<td>Input format</td>
<td>Optocoupler isolated input (Compatible with current sink output) (Negative logic *1)</td>
</tr>
<tr>
<td>Input resistance</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>Input ON current</td>
<td>2.0mA or more</td>
</tr>
<tr>
<td>Input OFF current</td>
<td>0.16mA or less</td>
</tr>
<tr>
<td>Interrupt</td>
<td>32 interrupt input signals are arranged into a single output of interrupt request signal. An interrupt is generated at the rising edge (HIGH-to-LOW transition) or falling edge (LOW-to-HIGH transition) (set by software).</td>
</tr>
<tr>
<td>Response time</td>
<td>200μsec within *2</td>
</tr>
<tr>
<td>Output section</td>
<td></td>
</tr>
<tr>
<td>Number of output signal channels</td>
<td>32 channels (1 common)</td>
</tr>
<tr>
<td>Output format</td>
<td>Optocoupler isolated open collector output (current sink type) (Negative logic*1)</td>
</tr>
<tr>
<td>Output voltage</td>
<td>35VDC (Max.)</td>
</tr>
<tr>
<td>Output current</td>
<td>100mA (per channel) (Max.)</td>
</tr>
<tr>
<td>Residual voltage with output on</td>
<td>0.5V or less (Output current≤50mA), 1.0V or less (Output current≤100mA)</td>
</tr>
<tr>
<td>Surge protector</td>
<td>Zener diode RD47FM(NEC) or equivalent</td>
</tr>
<tr>
<td>Response time</td>
<td>200μsec within *2</td>
</tr>
<tr>
<td>USB section</td>
<td></td>
</tr>
<tr>
<td>Bus specification</td>
<td>USB Specification 2.0/1.1 standard</td>
</tr>
<tr>
<td>USB transfer rate</td>
<td>12Mbps (Full-speed), 480Mbps (High-speed) *3</td>
</tr>
<tr>
<td>Power supply</td>
<td>Bus power / Self-power *4</td>
</tr>
<tr>
<td>Common section</td>
<td></td>
</tr>
<tr>
<td>Number of terminals used at the same time</td>
<td>127 terminals (Max.) *5</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>1000Vrms</td>
</tr>
<tr>
<td>External circuit power supply*6</td>
<td>12 · 24VDC(±10%)</td>
</tr>
<tr>
<td>Current consumption (Max.)</td>
<td>5VDC 400mA</td>
</tr>
<tr>
<td>Operating conditions78</td>
<td>0 · 50°C, 10 · 90%RH (No condensation)</td>
</tr>
<tr>
<td>Allowable distance of signal extension</td>
<td>Approx. 50m (depending on wiring environment)</td>
</tr>
<tr>
<td>Physical dimensions (mm)</td>
<td>180(W) x 140(D) x 34(H) (No protrusions)</td>
</tr>
<tr>
<td>Weight</td>
<td>300g (Not including the USB cable, attachment)</td>
</tr>
<tr>
<td>Connector</td>
<td>96pin half-pitch connector [M(male)type] PCR-E96LMD+ [mfd. by HONDA TSUSHIN KOGYO CO., LTD.] or equivalence to it</td>
</tr>
<tr>
<td>Attached cable</td>
<td>USB cable 1.8m</td>
</tr>
<tr>
<td>Applicable wire</td>
<td>AWG28 · 16</td>
</tr>
</tbody>
</table>

*1 Data “0” and “1” correspond to the High and Low levels, respectively.

*2 The Optocoupler’s response time comes.

*3 This depends on the PC environment used (OS and USB host controller).

*4 Use 5VDC power supply for self-power when you use the USB hub function.

*5 As a USB hub is also counted as one device, you cannot just connect 127 USB unit.
6. About Hardware

*6 External circuit power supply is required separately.
*7 To suppress the heating, ensure that there are spaces for ventilation (about 5cm) around this product.
*8 When using the attached AC adaptor POA200-20-2, it is 0 °C - 40°C
Physical dimensions

![Physical dimensions diagram](image)

Figure 6.1. Physical dimensions

Block Diagram

![Block Diagram](image)

Figure 6.2. Block Diagram